Xuliqin homework for lecture 2-pet names

import pandas as pd
df = pd.read_csv('./file/seattle_pet_licenses.csv')
df
animal_s_name license_issue_date license_number primary_breed secondary_breed species zip_code
0 Ozzy 2005-03-29T00:00:00.000 130651.0 Dachshund, Standard Smooth Haired NaN Dog 98104
1 Jack 2009-12-23T00:00:00.000 898148.0 Schnauzer, Miniature Terrier, Rat Dog 98107
2 Ginger 2006-01-20T00:00:00.000 29654.0 Retriever, Golden Retriever, Labrador Dog 98117
3 Pepper 2006-02-07T00:00:00.000 75432.0 Manx Mix Cat 98103
4 Addy 2006-08-04T00:00:00.000 729899.0 Retriever, Golden NaN Dog 98105
... ... ... ... ... ... ... ...
66037 Lily 2016-12-27T00:00:00.000 NaN Domestic Shorthair Mix Cat 98117
66038 Ellie 2016-11-29T00:00:00.000 NaN German Shepherd Mix Dog 98105
66039 Sammy 2016-12-05T00:00:00.000 NaN Terrier Maltese Dog 98105
66040 Buddy 2016-12-06T00:00:00.000 NaN Bullmastiff Mix Dog 98105
66041 Aku 2016-12-07T00:00:00.000 NaN Chihuahua, Short Coat Terrier Dog 98106

66042 rows × 7 columns

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 66042 entries, 0 to 66041
Data columns (total 7 columns):
 #   Column              Non-Null Count  Dtype  
---  ------              --------------  -----  
 0   animal_s_name       64685 non-null  object 
 1   license_issue_date  66042 non-null  object 
 2   license_number      43885 non-null  float64
 3   primary_breed       66042 non-null  object 
 4   secondary_breed     22538 non-null  object 
 5   species             66042 non-null  object 
 6   zip_code            65884 non-null  object 
dtypes: float64(1), object(6)
memory usage: 3.5+ MB
df['animal_s_name'].value_counts()
animal_s_name
Lucy          566
Bella         451
Charlie       447
Max           374
Luna          361
             ... 
Manasseh        1
Taba            1
Miriam          1
Number Six      1
Rollins         1
Name: count, Length: 15795, dtype: int64